Application of Augmented Reality in image-guided Cardiac surgery

Share

Many inter-cardiac interventions are performed either via open-heart surgery, or using minimally invasive approaches, where instrumentation is introduced into the cardiac chambers via the vascular system or heart wall. While many of the latter procedures are often employed under x-ray guidance, for some of these x-ray imaging is not appropriate, and ultrasound is the preferred intra-operative imaging modality. Two such procedures involves the repair of a mitral-valve leaflet, and the replacement of aortic valves. Both employ instruments introduced into the heart via the apex. For the mitral procedure, the standard of care for this procedure employs a 3D Trans-esophageal echo (TEE) probe as guidance, but using primarily its bi-plane mode, with full 3D only being used sporadically. In spite of the clinical success of this procedure, many problems are encountered during the navigation of the instrument to the site of the therapy. To overcome these difficulties, we have developed a guidance platform that tracks the US probe and instrument, and augments the US mages with virtual   elements representing the instrument and target, to optimise the navigation process.



  Date and Time

  Location

  Contact

  Registration



  • 15 T. W. Alexander Drive
  • Research Triangle Park, North Carolina
  • United States 27709-3547
  • Building: North Carolina Biotechnology Center
  • Room Number: Auditorium
  • Click here for Map

Staticmap?size=250x200&sensor=false&zoom=14&markers=35.9233502%2c 78
  • Co-sponsored by NC Biotechnology Center
  • Starts 11 March 2015 04:00 PM
  • Ends 13 April 2015 11:00 PM
  • All times are EST5EDT
  • No Admission Charge
  • Register


  Speakers

Dr. Terry Peters

Dr. Terry Peters of Imaging Research Laboratories at the Robarts Research Institute (RRI), London, ON, Canada

Topic:

Application of Augmented Reality in image-guided Cardiac surgery

Many inter-cardiac interventions are performed either via open-heart surgery, or using minimally invasive approaches, where instrumentation is introduced into the cardiac chambers via the vascular system or heart wall. While many of the latter procedures are often employed under x-ray guidance, for some of these x-ray imaging is not appropriate, and ultrasound is the preferred intra-operative imaging modality. Two such procedures involves the repair of a mitral-valve leaflet, and the replacement of aortic valves. Both employ instruments introduced into the heart via the apex. For the mitral procedure, the standard of care for this procedure employs a 3D Trans-esophageal echo (TEE) probe as guidance, but using primarily its bi-plane mode, with full 3D only being used sporadically. In spite of the clinical success of this procedure, many problems are encountered during the navigation of the instrument to the site of the therapy. To overcome these difficulties, we have developed a guidance platform that tracks the US probe and instrument, and augments the US mages with virtual   elements representing the instrument and target, to optimise the navigation process.

Biography:

Dr. Terry Peters is a Scientist in the Imaging Research Laboratories at the Robarts Research Institute (RRI), London, ON, Canada, and Professor in the Departments of Medical Imaging and Medical Biophysics at Western University London, Canada, as well as a member of the Graduate Programs in Neurosciences and Biomedical Engineering. He is also an adjunct Professor at McGill University in Montreal. He received his graduate training at the University of Canterbury in New Zealand in Electrical Engineering, under the direction of Professor Richard Bates. His PhD work dealt with fundamental issues in Computed Tomography image reconstruction, and resulted in a seminal paper on the topic in 1971, just prior to the beginning of CT’s commercial development and worldwide application. For the past 30 years, his research has built on this foundation, focusing on the application of computational hardware and software advances to medical imaging modalities in surgery and therapy. Starting in 1978 at the Montreal Neurological Institute (MNI), Dr. Peters’ lab pioneered many of the image-guidance techniques and applications for image-guided neurosurgery.   In 1997, he was recruited by the Robarts Research Institute at Western, to establish a focus of image-guided surgery and therapy within the Robarts Imaging Research Laboratories. His lab has expanded over the past seventeen years to encompass image-guided procedures of the heart, brain and abdomen. He has authored over 250 peer-reviewed papers and book chapters, a similar number of abstracts, and has delivered over 200 invited presentations. He has mentored over 85 trainees at the Masters, Doctoral and Postdoctoral levels.

 

He is a Fellow of the Institute of Electrical and Electronics Engineers, the Canadian College of Physicists in Medicine; the Canadian Organization of Medical Physicists; the American Association of Physicists in Medicine, the Australasian College of Physical Scientists and Engineers in Medicine; the MICCAI Society, and the Institute of Physics. In addition, he received the Dean’s Award for Research Excellence at Western University in 2011, the Hellmuth Prize for Achievement in Research from Western in 2012, and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society’s Enduring Impact Award in 2014.





Agenda

5:30-6:00 PM - Social Networking and Refreshments

6:00-7:30 Presentation

7:30 - 8:30 Q&A